A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae
نویسندگان
چکیده
In vivo time-lapse microscopy reveals that the number of peroxisomes in Saccharomyces cerevisiae cells is fairly constant and that a subset of the organelles are targeted and segregated to the bud in a highly ordered, vectorial process. The dynamin-like protein Vps1p controls the number of peroxisomes, since in a vps1Delta mutant only one or two giant peroxisomes remain. Analogous to the function of other dynamin-related proteins, Vps1p may be involved in a membrane fission event that is required for the regulation of peroxisome abundance. We found that efficient segregation of peroxisomes from mother to bud is dependent on the actin cytoskeleton, and active movement of peroxisomes along actin filaments is driven by the class V myosin motor protein, Myo2p: (a) peroxisomal dynamics always paralleled the polarity of the actin cytoskeleton, (b) double labeling of peroxisomes and actin cables revealed a close association between both, (c) depolymerization of the actin cytoskeleton abolished all peroxisomal movements, and (d) in cells containing thermosensitive alleles of MYO2, all peroxisome movement immediately stopped at the nonpermissive temperature. In addition, time-lapse videos showing peroxisome movement in wild-type and vps1Delta cells suggest the existence of various levels of control involved in the partitioning of peroxisomes.
منابع مشابه
Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors
In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral...
متن کاملActin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae
During cell division, cytoplasmic organelles are not synthesized de novo, rather they are replicated and partitioned between daughter cells. Partitioning of the vacuole in the budding yeast Saccharomyces cerevisiae is coordinated with the cell cycle and involves a dramatic translocation of a portion of the parental organelle from the mother cell into the bud. While the molecular mechanisms that...
متن کاملMyosin-driven peroxisome partitioning in S. cerevisiae
In Saccharomyces cerevisiae, the class V myosin motor Myo2p propels the movement of most organelles. We recently identified Inp2p as the peroxisome-specific receptor for Myo2p. In this study, we delineate the region of Myo2p devoted to binding peroxisomes. Using mutants of Myo2p specifically impaired in peroxisome binding, we dissect cell cycle-dependent and peroxisome partitioning-dependent me...
متن کاملDynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae.
Saccharomyces cerevisiae contains three dynamin-related-proteins, Vps1p, Dnm1p and Mgm1p. Previous data from glucose-grown VPS1 and DNM1 null mutants suggested that Vps1p, but not Dnm1p, plays a role in regulating peroxisome abundance. Here we show that deletion of DNM1 also results in reduction of peroxisome numbers. This was not observed in glucose-grown dnm1 cells, but was evident in cells g...
متن کاملA Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in Saccharomyces cerevisiae
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 155 شماره
صفحات -
تاریخ انتشار 2001